Versatile Synthesis of Isocoumarins and α -Pyrones by Ruthenium-Catalyzed Oxidative C-H/O-H Bond Cleavages

2012 Vol. 14, No. 3 930–933

ORGANIC LETTERS

Lutz Ackermann,* Jola Pospech, Karolina Graczyk, and Karsten Rauch

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstrasse 2, 37077 Göttingen, Germany

Lutz.Ackermann@chemie.uni-goettingen.de

Received December 27, 2011

ABSTRACT

An inexpensive cationic ruthenium(II) catalyst enabled the expedient synthesis of isocoumarins through oxidative annulations of alkynes by benzoic acids. This C–H/O–H bond functionalization process also proved applicable to the preparation of α -pyrones and was shown to proceed by rate-limiting C–H bond ruthenation.

Isocoumarins and α -pyrones are key structural motifs of compounds with important biological activities.¹ One of the most general strategies for their synthesis involves palladium-catalyzed annulations of alkynes by *ortho*-halo-substituted carboxylic acid derivatives.² While this approach inherently requires prefunctionalized benzoic acids as substrates, a more atom- and step-economical access was elegantly devised by Miura and Satoh through rhodium-catalyzed³ oxidative⁴ annulations of alkynes by

carboxylic acids.^{5,6} We, in contrast, reported recently on the use of significantly less expensive ruthenium catalysts⁷ for oxidative C–H/N–H bond functionalizations.⁸ Further, Miura⁹ and we¹⁰ disclosed ruthenium-catalyzed oxidative alkenylations of carboxylic acid derivatives *via* twofold C–H bond cleavages. In continuation of our studies, we became interested in exploring costeffective ruthenium catalysts for oxidative annulations of alkynes by carboxylic acids,¹¹ on which we report herein.

^{(1) (}a) Rossi, R.; Carpita, A.; Bellina, F.; Stabile, P.; Mannina, L. *Tetrahedron* **2003**, *59*, 2067–2081. (b) Mali, R. S.; Babu, K. N. *J. Org. Chem.* **1998**, *63*, 2488–2492. (c) Powers, J. C.; Asgian, J. L.; Ekici, Ö. D.; James, K. E. *Chem. Rev.* **2002**, *102*, 4639–4750 and references cited therein.

^{(2) (}a) Joule, J. A.; Mills, K. *Heterocyclic Chemistry*, 4th ed.; Blackwell Science Ltd.; Oxford, 2000. (b) Zeni, G.; Larock, R. C. *Chem. Rev.* **2004**, *104*, 2285–2310. A selected example: (c) Larock, R. C.; Doty, M. J.; Han, X. J. Org. Chem. **1999**, *64*, 8770–8779.

⁽³⁾ Satoh, T.; Miura, M. Chem. - Eur. J. 2010, 16, 11212-11222.

⁽⁴⁾ Representative recent reviews on C-H bond functionalizations:
(a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068-5083. (b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215-1292. (c) Wencel-Delord, J.; Droege, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740-4761. (d) Yoo, W.-J.; Li, C.-J. Top. Curr. Chem. 2010, 292, 281-302. (e) Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010, 8, 4503-4513. (f) Daugulis, O. Top. Curr. Chem. 2010, 292, 57-84. (g) Ackermann, L. Chem. Commun. 2010, 46, 4866-4877. (h) Fagnou, K. Top. Curr. Chem. 2010, 292, 35-56. (i) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev 2009, 38, 3242-3272. (j) Ackermann, L.; Vicente, R.; Kapdi, A. Angew. Chem., Int. Ed. 2009, 48, 9792-9826. (k) Thansandote, P.; Lautens, M. Chem.—Eur. J. 2009, 15, 5874-5883. (l) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013-3039 and references cited therein.

^{(5) (}a) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 1407–1409.
(b) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362–5367.
(c) Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 3478–3483. (d) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 6295–6298.

⁽⁶⁾ Reviews: (a) Satoh, T.; Miura, M. Synthesis 2010, 3395–3409.
(b) Satoh, T.; Ueura, K.; Miura, M. Pure Appl. Chem. 2008, 80, 1127–1134.

⁽⁷⁾ Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292, 211-229.

^{(8) (}a) Ackermann, L.; Lygin, A. V.; Hofmann, N. *Angew. Chem., Int. Ed.* **2011**, *50*, 6379–6382. (b) Ackermann, L.; Lygin, A. V.; Hofmann, N. *Org. Lett.* **2011**, *13*, 3278–3281. (c) Ackermann, L.; Fenner, S. *Org. Lett.* **2011**, *13*, 6548–6551. (d) Ackermann, L.; Wang, L.; Lygin, A. V. *Chem. Sci.* **2012**, *3*, 177–180. (e) For oxidative arylations, see also: Ackermann, L.; Novák, P.; Vicente, R.; Pirovano, V.; Potukuchi, H. K. *Synthesis* **2010**, 2245–2253.

⁽⁹⁾ For oxidative alkenylations of heteroarenes, see: Ueyama, T.; Mochida, S.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. *Org. Lett.* **2011**, *13*, 706–708.

⁽¹⁰⁾ Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153-4155.

We initiated our studies by optimizing reaction conditions for the oxidative annulation of tolane (2a) by carboxylic acid 1a (Table 1). Notably, the desired isocoumarin synthesis occurred with water¹² as the reaction medium, when using KPF_6 as a cocatalytic additive (entries 1 and 2). Yet, among a set of representative solvents, t-AmOH was found to be optimal (entries 1-8). The oxidative annulation proceeded efficiently under an atmosphere of ambient air (entry 9). It is noteworthy that the cationic¹³ ruthenium(II) catalysts derived from KPF₆ proved to be more effective than the corresponding complexes generated from cocatalytic amounts of AgBF₄, AgSbF₆, AgOTf, CsOAc, HOPiv, or KOAc (entries 9–17). Furthermore, $Cu(OAc)_2 \cdot H_2O$ turned out to be the sacrificial oxidant of choice (entries 18 - 20).

Table 1. Optimization of Ruthenium-Catalyzed OxidativeAnnulation a

^{*a*} Reaction conditions: **1a** (2.0 mmol), **2a** (1.0 mmol), $[RuCl_{2^{-}}(p\text{-cymene})]_2$ (2.5 mol %), additive (20 mol %), oxidant (2.0 equiv), solvent (3.0 mL), 120 °C, 16 h; isolated yields, under N₂. ^{*b*} GC conversion. ^{*c*} Under air. ^{*d*} 5.0 mmol scale. ^{*e*} Cu(OAc)_2 \cdot H_2O (1.5 equiv).

(11) (a) Pospech, J. MSc thesis, *Georg-August-Universitaet Goettin*gen, 08.2011. (b) After submission of our manuscript a related transformation was independently reported: Chinnagolla, R. K.; Jeganmohan, M. *Chem. Commun.* **2012**, *48*, 2030–2032. With an optimized catalytic system in hand, we probed its scope in the ruthenium-catalyzed oxidative annulation of aryl-substituted alkynes **2** by benzoic acids **1** (Scheme 1). The cationic ruthenium(II) catalyst proved broadly applicable and, thus, enabled the synthesis of diversely decorated isocoumarins **3**. Notably, also salicylic acid **1g** bearing an unprotected hydroxyl group was chemoselectively converted to the desired product **3ga**. The oxidative annulation of electron-rich alkynes **2b** and **2c** occurred efficiently as well.

The ruthenium catalysts were not limited to the use of tolane derivatives but were also found to be applicable to alkyl-substituted alkynes 2 (Scheme 2). Again, valuable functional groups, such as free hydroxyl groups or fluoro- and bromo-substituents, were well tolerated by the catalytic system, the latter of which could be used for the subsequent elaboration of the obtained isocoumarins 3.

Moreover, heteroaromatic carboxylic acids 1 turned out to be suitable substrates for the ruthenium-catalyzed C-H/O-H bond functionalization process, thereby delivering valuable indole derivatives 3 (Scheme 3).

Notably, unsymmetrically substituted alkynes **2f** and **2g** were converted with remarkably high regioselectivity, furnishing the desired isocoumarins **3** (Scheme 4).

The cationic ruthenium(II) catalyst further allowed the oxidative annulation of alkynes by acrylic acid derivative

Scheme 1. Scope Using Aryl-Substituted Alkynes 2

⁽¹²⁾ For ruthenium-catalyzed direct arylations and alkylations in the presence of water, see: (a) Ackermann, L.; Hofmann, N.; Vicente, R. Org. Lett. 2011, 13, 1875–1877. (b) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2010, 49, 6629–6632. (c) Ackermann, L. Org. Lett. 2005, 7, 3123–3125. See also refs 8c and 10.

^{(13) (}a) Bennett, M. A.; Smith, A. K. J. Chem. Soc., Dalton Trans. 1974, 233–241. (b) Fernández, S.; Pfeffer, M.; Ritleng, V.; Sirlin, C. Organometallics 1999, 18, 2390–2394.

Scheme 3. Oxidative Annulations with Heteroarenes 1

4, thus providing a step-economical access to α -pyrone 5a (Scheme 5).

Scheme 4. Annulations of Unsymmetrically Substituted Alkynes 2

Scheme 5. Oxidative α -Pyrone Synthesis

Scheme 6. Intramolecular Competition Experiment

As to the catalyst's working mode, an intramolecular competition experiment with *meta*-substituted arene **1n** exclusively delivered product **3nd** through the site-selective functionalization of the C–H bond, displaying a higher kinetic acidity (Scheme 6). Moreover, additional competition experiments between differently substituted starting materials indicated aryl-substituted alkynes **2** and electronrich carboxylic acids **1** to be preferentially converted.

Mechanistic studies with isotopically labeled substrate $[D_5]$ -**1b** revealed the C–H bond metalation to be irreversible in nature, with a kinetic isotope effect of $k_H/k_D \approx 7.3$ (Scheme 7). These experimental findings are in good agreement with a reaction manifold involving a rate-limiting C–H bond metalation through acetate assistance.¹⁴

Thus, a proposed catalytic cycle initiates with an acetate-assisted irreversible cycloruthenation (Scheme 8), followed by coordination of alkyne 2. Subsequent

⁽¹⁴⁾ A review: Ackermann, L. Chem. Rev. 2011, 111, 1315-1345.

regioselective migratory insertion delivers key intermediate **5**, which upon reductive elimination furnishes desired isocoumarin **3**.

In summary, we have developed an atom- and stepeconomical synthesis of isocoumarins through oxidative annulations of alkynes by carboxylic acids using an inexpensive ruthenium catalyst. The optimized cationic ruthenium(II) complex proved widely applicable and, hence, allowed the direct preparation of α -pyrones *via* a rate-limiting C–H bond ruthenation as the key step. Further studies on oxidative ruthenium-catalyzed C–H bond functionalizations are ongoing in our laboratories and will be reported in due course. Scheme 8. Proposed Catalytic Cycle

Acknowledgment. Support by the DFG is gratefully acknowledged.

Supporting Information Available. Experimental procedures, characterization data, and ¹H and ¹³C NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.